Abstract
Biotite igneous ages and well‐defined isochron ages of plutons from the composite Blue Tier Batholith and the Coles Bay area in northeastern Tasmania range from 395 to 370 Ma. The older limit of this range, for the George River granodiorite, is considerably older than any age previously recorded for NE Tasmania. The ages of the youngest plutons (Mt Paris and Anchor granites), which host cassiterite ores, record pervasive hydrothermal alteration events. The initial 87Sr/80Sr ratios of the granitoids range from 0.7061 to 0.7136 and suggest different protolith compositions, consistent with mineralogical and geochemical characteristics of each pluton. The S‐type garnetbiotite granites (Ansons Bay and Booby alia granites) have initial ratios greater than 0.7119, indicative of enriched, high Rb/Sr ratio, crustal source‐rocks of Proterozoic age (1700–800 Ma). The S‐type biotite granites (Poimena and Pearson granites) have relatively high initial 87Sr/86Sr ratios (0.7070, 0.7105) but overlap with those of the I‐type granodiorites (George River, Scamander Tier, Pyengana and Coles Bay granodiorites) which are in the range of 0.7061 to 0.7073. The initial ratios of the enriched altered plutons are poorly constrained, and on both hand‐specimen and thin‐section scales, reveal open‐system Sr isotopic patterns. Isochron ages for the arenite‐lutite and lutite sedimentary associations of the Mathinna Beds, which are intruded by the granitoids, reflect an approach to Sr isotopic equilibrium during regional metamorphism. The metamorphic age (401 ± 7 Ma) of the early Pragian arenite‐lutite association indicates a relatively small time interval between deposition, regional metamorphism and granitoid intrusion. The isotopic age for the lutite sedimentary association (423 ± 22 Ma) is tentatively correlated with a Benambran‐age burial metamorphic event that has not previously been recorded in Tasmania.