E2A-HLF usurps control of evolutionarily conserved survival pathways

Abstract
E2A-HLF, the chimeric fusion protein resulting from the leukemogenic translocation t(17;19), appears to employ evolutionarily conserved signaling cascades for its transforming and antiapoptotic functions. These arise from both impairment of normal E2A function and activation of a survival pathway triggered through the HLF bZip DNA binding and dimerization domain. Recent reports identify wild-type E2A as a tumor suppressor in T lymphocytes. Moreover, E2A-HLF has been shown to activate SLUG, a mammalian homologue of the cell death specification protein CES-1 in Caenorhabditis elegans, which appears to regulate an evolutionarily conserved cell survival program. Recently, several key mouse models have been generated, enabling further elucidation of these pathways on a molecular genetic level in vivo. In this review, we discuss the characteristics of both components of the fusion protein with regard to their contribution to the regulation of cell fate and the oncogenic potential of E2A-HLF.