Metallothionein induction in freshly isolated rat hepatocytes

Abstract
The control of metallothionein (MT) synthesis was investigated in freshly prepared rat hepatocytes in experiments of short-term duration. Viability and metabolic function were maintained in incubations of 6-h duration. MT synthesis was measurable in hepatocytes from fed rats at Zn concentrations down to 1 μM. Zn and dexamethasone induced concentration-dependent increases in the synthesis of MT with maximal increases above the 5-h control of 3.2- and 2.5-fold, respectively. Zn induction of MT was first measurable at 2 h and was inhibited by actinomycin C. Although initial (0 h) MT concentrations in hepatocytes from fasted rats were double those from fed rats, after 6-h incubation in the presence of 50 μM Zn, the fasted rat hepatocytes showed only half the MT concentrations of the fed rat hepatocytes. Glucagon and interleukin-6 (IL-6) were less effective inducers and increased MT synthesis by 28 and 17%, respectively. IL-6 (100 U/mL) was found to have an additive effect on MT synthesis above that of Zn alone (1–50 μM) or Zn plus dexamethasone (1 μM). A supernatant from LPS-stimulated macrophages increased MT synthesis by 40%. The basal MT synthesis was not increased by either tumor necrosis factor-α (TNF-α) or interleukin-1 (IL-1). All incubations were carried out in the presence of RPMI 1640 medium with Hepes (20 mM), bicarbonate (24 mM), and fatty acid-free albumin (FAFA; 0.5% w/v). MT synthesis was also seen using Krebs bicarbonate buffer with glucose (10 mM), Hepes (20 mM), and FAFA (0.5% w/v), and although the level of MT synthesis was less than in RPMI, the increases in concentrations of MT at 5 h were 225, 139, 36 and 20% for Zn, dexamethasone, glucagon, and control, respectively. It is concluded that MT synthesis occurs in freshly prepared hepatocytes and that these cells are responsive to some of the established inducers of MT. This system enables the study of MT synthesis in individual rats in various metabolic and pathological states.