Abstract
The morphology and growth kinetics of the cellular precipitate as well as its discontinuous coarsening have been studied in the temperature range 440–580 K. Optical microscopy and X-ray diffraction were used to characterize the cellular transformation. A rapidly solidified metastable Mg-7 at.% Al alloy was observed to decompose completely via a process which has been termed “cellular precipitation” into a lamellar structure consisting of the δ and γ phases at all aging temperatures used in this investigation. The fine lamellar structure of the primary cells subsequently decomposed into a coarse lamellar structure consisting of the same two phases. Lattice parameter measurements have indicated that the depleted matrix of the δ phase associated with the initial cells was richer in solute than the equilibrium solvus, δ/(δ+γ) . The solute concentration in the depleted matrix associated with the coarsened material was less than the published equilibrium solvus. Analysis of the growth kinetics of both the primary cellular reaction, and its subsequent coarsening stage, has indicated that the transformation is controlled by diffusion of aluminum through the cell boundaries. On a étudié, à des températures allant de 440 à 580 K, la morphologie et les cinétiques de croissance et de grossissement discontinu du précipité cellulaire. On a utilisé la microscopie optique et la diffraction de rayons-X pour caractériser la transformation cellulaire. On a observé qu'un alliage métastable de Mg-7 at.% Al rapidement solidifié, se décompose complètement en une structure lamellaire constituée de phases δ et γ, pour toutes les températures de vieillissement utilisées dans cette étude, via un processus appelé “précipitation cellulaire”. La structure lamellaire fine de cellules primaires s'est ensuite décomposée en une structure lamellaire grossière comprenant les mêmes deux phases. Les mesures des paramètres de mailles ont indiquées que la matrice appauvrie de la phase δ associée avec les cellules initiales était plus riche en soluté que le point d'équilibre du solvus δ/(δ+γ). La concentration en soluté de la matrice appauvrie, associée avec le matériau grossi, était moindre que celle du point d'équilibre. L'analyse de la cinétique des croissances, en premier lieu des réactions cellulaires, puis des étapes consécutives de grossissement, indique que la transformation est contrôlée par la diffusion d'aluminium au travers des joints de cellules.