Dynamic Generation of Spin-Orbit Coupling

Abstract
Spin-orbit coupling plays an important role in determining the properties of solids, and is crucial for spintronics device applications. Conventional spin-orbit coupling arises microscopically from relativistic effects described by the Dirac equation, and is described as a single particle band effect. In this work, we propose a new mechanism in which spin-orbit coupling can be generated dynamically in strongly correlated, nonrelativistic systems as the result of Fermi surface instabilities in higher angular momentum channels. Various spin-orbit couplings can emerge in these new phases, and their magnitudes can be continuously tuned by temperature or other quantum parameters.