Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey
- 1 June 1984
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 51 (6) , 1236-1256
- https://doi.org/10.1152/jn.1984.51.6.1236
Abstract
Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as response thresholds to shocks, synchronized to follow naturally occurring impulses at several different delays. Recovery in irregular units was more rapid than in regular units. Evidence is presented that externally applied currents acted at the spike trigger site rather than elsewhere in the sensory transduction process. We argue that the irregular discharge of some vestibular afferents offers no functional advantage in the encoding and transmission of sensory information. Rather, the irregularity of discharge is better viewed as a consequence of the enhanced sensitivity of these units to depolarizing influences, including afferent and efferent synaptic inputs.This publication has 25 references indexed in Scilit:
- Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal forceJournal of Neurophysiology, 1976
- Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relationsJournal of Neurophysiology, 1976
- Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamicsJournal of Neurophysiology, 1976
- Transfer characteristics of first and second order lateral canal vestibular neurons in gerbilBrain Research, 1976
- A Model of the Peripheral Auditory System Responding to Low-Frequency TonesBiophysical Journal, 1968
- The Information Capacity of Nerve Cells Using a Frequency CodeBiophysical Journal, 1967
- Some Models of Neuronal VariabilityBiophysical Journal, 1967
- A Stochastic Model of the Repetitive Activity of NeuronsBiophysical Journal, 1966
- New Measurements of the Capacity and the Resistance of the Myelin Sheath and the Nodal Membrane of the Isolated Frog Nerve FiberAmerican Journal of Physiology-Legacy Content, 1955
- The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata)The Journal of Physiology, 1955