Abstract
The stresses in the sheet covering, stringers, and rings of a reinforced monocoque cylinder of circular cross section are calculated for the case of a loading consisting of concentrated symmetric forces applied to the rings in the planes of the rings. The conventional assumptions of a linear normal stress distribution and a corresponding shear-stress distribution in the bent cylinder are replaced by a least-work analysis. Application of the theory to the numerical example of a cantilever monocoque cylinder yields a maximum shear stress in the sheet covering and a maximum bending moment in the ring amounting to 900 per cent and 33 per cent, respectively, of the values obtained by the conventional analysis.

This publication has 0 references indexed in Scilit: