Pro‐apoptotic activity of transiently expressed BCL‐2 occurs independent of BAX and BAK

Abstract
BCL-2 suppresses apoptosis induced by a wide variety of stimuli in multiple cell types. Most of the in vitro studies that have examined the activity of BCL-2 have employed stable cell lines that ectopically express BCL-2. We have reported that BCL-2 is expressed at high levels in the absence of the 5′- and 3′-UTRs of the Bcl-2 gene and transient high level of expression results in potent cell death (Uhlmann et al., [ 1998 ]: JBC 278:17926–17932). Expression of BCL-2 under the transcriptional control of the cognate 5′- and 3′-UTRs express lower levels of BCL-2 and does not cause cell death. Our present results suggest that in contrast to BCL-2, transient expression of BCL-xL does not induce cell death and coexpression of BCL-xL with the pro-apoptotic BCL-2 does not suppress cell death. The pro-apoptotic activity of BCL-2 appears to involve activation of the cytochrome c/caspase 9/caspase 3 pathway. Elevated levels of BCL-2 expression results in N-terminal cleavage of BCL-2 at a novel site different from a previously identified caspase cleavage site at Asp 34 by a non-caspase protease. Transient expression of a BCL-2 mutant lacking aa 51–85 within the loop region induces efficient cell death and N-terminal cleavage of BCL-2 while a different deletion mutant lacking aa 30–91 induces reduced levels of cell death in the absence of BCL-2 cleavage suggesting that N-terminal processing of BCL-2 may be an amplification event in BCL-2-mediated cell death. Overexpression of BCL-2 in a Bax-null human colon cancer cell line (HCT116Bax−/−) induces efficient cell death. The pro-apoptotic activity of BCL-2 is also observed in a Bax-null cells in which BAK expression is inhibited by stable RNAi expression. Our results suggest that BCL-2 contains an intrinsic pro-apoptotic activity and can induce apoptosis independent of BAX and BAK under specific conditions.