Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant.
Open Access
- 1 June 1996
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 7 (6) , 985-999
- https://doi.org/10.1091/mbc.7.6.985
Abstract
In the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y transit from the Golgi to the lysosome-like vacuole via an endosome-like intermediate compartment. The vacuolar protein sorting (vps) mutant vps28, a member of the "class E" vps mutants, accumulates vacuolar, endocytic, and late Golgi markers in an aberrant endosome-like class E compartment. Sequence analysis of VPS28 revealed an open reading frame predicted to encode a hydrophilic protein of 242 amino acids. Consistent with this, polyclonal antiserum raised against Vps28p recognized a cytoplasmic protein of 28 kDa. Disruption of VPS28 resulted in moderate defects in both biosynthetic traffic and endocytic traffic destined for the vacuole. The transport of soluble vacuolar hydrolases to the vacuole was impaired in vps28 null mutant cells (approximately 40-50% carboxypeptidase Y missorted). Internalization of the endocytic marker FM 4-64, a vital lipophilic dye, resulted in intense staining of a small intracellular compartment adjacent to an enlarged vacuole in delta vps28 cells. Furthermore, the vacuolar H+-ATPase accumulated in the perivacuolar class E compartment in delta vps28 cells, as did a-factor receptor Ste3p that was internalized from the plasma membrane. Electron microscopic analysis revealed the presence of a novel compartment consisting of stacks of curved membrane cisternae. Immunolocalization studies demonstrated that the vacuolar H+-ATPase is associated with this cupped cisternal structure, indicating that it corresponds to the class E compartment observed by fluorescence microscopy. Our data indicate that kinetic defects in both anterograde and retrograde transport out of the prevacuolar compartment in vps28 mutants result in the accumulation of protein and membrane in an exaggerated multilamellar endosomal compartment. We propose that Vps28p, as well as other class E Vps proteins, may facilitate (possibly as coat proteins) the formation of transport intermediates required for efficient transport out of the prevacuolar endosome.Keywords
This publication has 56 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- Isolation and characterization of the intracellular MHC class II compartmentNature, 1994
- Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytesNature, 1994
- Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae.The Journal of cell biology, 1991
- Detection of an intermediate compartment involved in transport of alpha-factor from the plasma membrane to the vacuole in yeast.The Journal of cell biology, 1990
- Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus.The Journal of cell biology, 1988
- Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectorsGene, 1985
- [12] One-step gene disruption in yeastPublished by Elsevier ,1983
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982
- Analysis of gene control signals by DNA fusion and cloning in Escherichia coliJournal of Molecular Biology, 1980