Global analysis of empirical relations between annual climate and seasonality of NDVI
- 1 January 1998
- journal article
- research article
- Published by Taylor & Francis in International Journal of Remote Sensing
- Vol. 19 (15) , 2921-2948
- https://doi.org/10.1080/014311698214352
Abstract
This paper describes the use of satellite data to calibrate a new climate vegetation greenness relation for global change studies. We examined statistical relations between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our understanding of intra-annual patterns and global controls on natural vegetation dynamics. Multiple linear regression results using global 1 gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80% of the geographical variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from 1 grid cells mapped as greater than 25% inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.Keywords
This publication has 0 references indexed in Scilit: