Neutrinos Associated With Cosmic Rays of Top-Down Origin

Abstract
Top-down models of cosmic rays produce more neutrinos than photons and more photons than protons. In these models, we reevaluate the fluxes of neutrinos associated with the highest energy cosmic rays in light of mounting evidence that they are protons and not gamma rays. While proton dominance at EeV energies can possibly be achieved by efficient absorption of the dominant high-energy photon flux on universal and galactic photon and magnetic background fields, we show that the associated neutrino flux is inevitably increased to a level where it should be within reach of operating experiments such as AMANDA II, RICE and AGASA. In future neutrino telescopes, tens to a hundred, rather than a few neutrinos per kilometer squared per year, may be detected above 1 PeV.

This publication has 0 references indexed in Scilit: