A new class of truly consistent splitting schemes for incompressible flows
- 5 September 2003
- journal article
- Published by Elsevier in Journal of Computational Physics
- Vol. 192 (1) , 262-276
- https://doi.org/10.1016/j.jcp.2003.07.009
Abstract
No abstract availableKeywords
This publication has 24 references indexed in Scilit:
- Application of a fractional-step method to incompressible Navier-Stokes equationsPublished by Elsevier ,2004
- On the error estimates for the rotational pressure-correction projection methodsMathematics of Computation, 2003
- Role of the LBB Condition in Weak Spectral Projection MethodsJournal of Computational Physics, 2001
- Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentaleESAIM: Mathematical Modelling and Numerical Analysis, 1999
- On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemesMathematics of Computation, 1996
- A remark on the projection‐3 methodInternational Journal for Numerical Methods in Fluids, 1993
- High-order splitting methods for the incompressible Navier-Stokes equationsJournal of Computational Physics, 1991
- Boundary conditions for incompressible flowsJournal of Scientific Computing, 1986
- A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flowsJournal of Computational Physics, 1979
- Numerical solution of the Navier-Stokes equationsMathematics of Computation, 1968