Response of white adipocyte of mouse and rabbit to catecholamines and ACTH

Abstract
The isolated intact white adipocyte of the Swiss mouse responds to both ACTH and catecholamines by an elevation of cAMP levels and an increase in lipolysis. However, in the isolated plasma membrane of the mouse adipocyte, adenylate cyclase loses its responsiveness to ACTH but retains its ability to respond to catecholamines. This lack of responsiveness to ACTH by adenylate cyclase of mouse adipocyte plasma membrane can be overcome, at least partially, by addition of GPP (NH)p, an analog of GTP, to the assay medium. The data on mouse adipocyte membrane suggests that the coupling of ACTH receptor to adenylate cyclase is dependent on GTP and that catecholamine-activation of adenylate cyclase is less dependent on this nucleotide. The isolated intact white adipocyte of adult New Zealand rabbit responds to ACTH, but does not (or only weakly) respond to catecholamines. In contrast to the mouse plasma membrane preparation, adenylate cyclase of adipocyte membrane of the rabbit responds to ACTH. And the addition of GPP(NH)P is not required to demonstrate the ACTH sensitive adenylate cyclase activity. The difference between mouse and rabbit adipocyte membrane in the requirement for GPP(NH)P in ACTH action is not readily explained. The lack of catecholamine sensitivity of rabbit membrane enzyme cannot be reversed by addition of GPP(NH)P or adenosine deaminase. These two adenylate cyclase model systems using mouse and rabbit adipocyte plasma membrane may be useful tools for the study of the specificity and mechanism of action of lipolytic hormones such as ACTH and catecholamines.

This publication has 23 references indexed in Scilit: