Easy Bayes Estimation for Rasch-Type Models

Abstract
A Bayes estimation procedure is introduced that allows the nature and strength of prior beliefs to be easily specified and modal posterior estimates to be obtained as easily as maximum likelihood estimates. The procedure is based on constructing posterior distributions that are formally identical to likelihoods, but are based on sampled data as well as artificial data reflecting prior information. Improvements in performance of modal Bayes procedures relative to maximum likelihood estimation are illustrated for Rasch-type models. Improvements range from modest to dramatic, depending on the model and the number of items being considered.

This publication has 7 references indexed in Scilit: