Rates and Products of Long-Chain Fatty Acid Synthesis from [1-14C]Acetate in Chloroplasts Isolated from Leaves of 16:3 and 18:3 Plants

Abstract
Chloroplasts highly active in the synthesis of long-chain fatty acids from [1-14C]acetate were prepared from leaves of Solanum nodiflorum, Chenopodium quinoa, Carthamus tinctorius and Pisum sativum. These preparations were used to test whether the various additions to incubation media found to stimulate the synthesis of particular lipid classes in vitro by Spinacia oleracea chloroplasts were applicable generally. Chloroplasts from 18:3 plants incorporated a greater proportion of radioactivity into unesterified fatty acids under control conditions than did those from 16:3 plants. Supplying exogenous sn-glycerol-3-phosphate or Triton X-100 to chloroplasts increased the synthesis of glycerolipids in all cases and accentuated the capacity of chloroplasts from 18:3 plants to accumulate phosphatidic acid rather than the diacylglycerol accumulated by chloroplasts from 16:3 plants. The UDP-galactose-dependent synthesis of labeled diacylgalactosylglycerol was much less active in incubations of chloroplasts from 18:3 plants also containing sn-glycerol 3-phosphate and Triton X-100 compared with similar incubations from 16:3 plants. Exogenous CoA stimulated total fatty acid synthesis in all chloroplast preparations and the further addition of ATP diverted radioactivity from the unesterified fatty acid to acyl-CoA. The results were discussed in terms of the 2-pathway hypothesis for lipid synthesis in leaves.

This publication has 24 references indexed in Scilit: