Diffusion of a small molecule in the cytoplasm of mammalian cells.
- 1 June 1984
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 81 (11) , 3414-3418
- https://doi.org/10.1073/pnas.81.11.3414
Abstract
Electron spin resonance was used to measure the diffusion of a small (Mr 170) spin label in the aqueous cytoplasm of mammalian cells. Translational and rotational motion were determined from the same spectra. Based on measurements made in model systems, it was hypothesized that calculations of the apparent viscosity from either rotational or translational motion would distinguish between the effects of cytoplasmic viscosity or cytoplasmic structure on diffusion. The diffusion coefficient calculated from spin label collision frequency, averaged 3.3 X 10(-6) cm2/sec in several cell lines. It was greater in growing cells and in cells treated with cytochalasin B than in quiescent cells. The viscosity of the cytoplasm calculated from the translational diffusion coefficient or the rotational correlation time was 2.0-3.0 centipoise (1 P = 0.1 Pa X sec), about 2-3 times that of the spin label in water. Therefore, over the dimensions measured by the technique, 50-100 A, solvent viscosity appears to be the major determinant of particle movement in cells under physiological conditions. However, when cells were subjected to hypertonic conditions, the translational motion decreased by 67%, while the rotational motion changed less than 20%. These data suggested that the decrease in cell volume under hypertonic conditions was accompanied by an increase in cytoplasmic barriers and a decrease in the spacing between existing components. In addition, a comparison of reported values for diffusion of a variety of molecules in water and in cells indicates that cytoplasmic structure plays an important role in the diffusion of proteins such as bovine serum albumin.This publication has 20 references indexed in Scilit:
- How crowded is the cytoplasm?Cell, 1982
- Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recoveryCell, 1982
- Spin label studies on osmotically-induced changes in the aqueous cytoplasm of Phaeodactylum tricornutumBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1982
- The Ground Substance of the Living CellScientific American, 1981
- Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality.The Journal of cell biology, 1979
- Spin-label studies on the aqueous regions of phospholipid multilayersBiochemistry, 1977
- Nuclear envelope permeabilityNature, 1975
- The Volume Available to Diffusion in the Muscle FiberCanadian Journal of Physiology and Pharmacology, 1974
- Viscosity of Cellular ProtoplasmScience, 1974
- THE PERMEABILITY OF THE AMPHIBIAN OOCYTE NUCLEUS, IN SITU The Journal of cell biology, 1972