Configuration mixing of angular momentum projected self-consistent mean-field states for neutron-deficient Pb isotopes

Abstract
We study the low-lying collective excitation spectra of the neutron-deficient lead isotopes Pb182-Pb194 by performing a configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used supplemented by a density-dependent zero-range pairing force. This study supports the interpretation of spectra made on the grounds of more schematic models in terms of coexisting spherical, oblate, prolate and superdeformed prolate structures. The model qualitatively reproduces the variation of the spectra with neutron number. Our results for E0 and E2 transition probabilities are compared with the few existing experimental data. Finally, we predict the presence of superdeformed bands at low excitation energy in the most neutron-deficient isotopes.

This publication has 0 references indexed in Scilit: