Prediction of Cellular Immune Responses against CFTR in Patients with Cystic Fibrosis after Gene Therapy

Abstract
Different classes of mutations (class I–VI) of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene are responsible for lung/pancreatic disease. The most common mutation, ΔF508, is characterized by expression of precursor forms of CFTR but no functional CFTR. Since only 5–10% of normal CFTR function is required to correct the electrophysiologic defect across the airway epithelium, gene therapy holds promise for treatment of patients with CF lung disease. However, efficient delivery and transgene expression are not the only parameters that may influence the success of gene therapy. Host-specific immune responses generated against the therapeutic CFTR protein may pose a problem, especially when the coding sequence between the normal CFTR and mutated CFTR differ. This phenomenon is more pertinent to class I mutations in which large fragments of the protein are not expressed. However, T cells directed against epitopes that span sequences containing class II–V mutations are also possible. W...