A high-speed buried channel MOSFET isolated by an implanted silicon dioxide layer

Abstract
This paper describes a high-speed buried channel MOSFET dielectrically isolated from the substrate through the use of oxygen implantation technology. An implanted silicon dioxide layer is formed just beneath the surface. An n-type epitaxial layer is grown on the remaining thin single-crystal layer at the surface. Then, buried channel MOSFET's are formed on the n-type layer. The interface between the implanted SiO2and the upper silicon is abrupt, and the interface charge density is 6.9 × 1010cm-2. The effective carrier mobility calculated from the drain conductance is 750 cm2/V . s. Leakage current which should be inherent in this device structure can not be observed. Submicron MOSFET's show much smaller threshold voltage shifts than conventional ones, and this agrees with the results of two-dimensional numerical calculation. A ring oscillator composed of MOSFET's with 1-µm channel length shows a minimum delay time of 95 ps and a power delay product of 310 fJ at VDDof 15 V.

This publication has 0 references indexed in Scilit: