Noninvasive Prenatal Diagnosis of Fetal Trisomy 21 by Allelic Ratio Analysis Using Targeted Massively Parallel Sequencing of Maternal Plasma DNA
Open Access
- 29 May 2012
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 7 (5) , e38154
- https://doi.org/10.1371/journal.pone.0038154
Abstract
Plasma DNA obtained from a pregnant woman contains a mixture of maternal and fetal DNA. The fetal DNA proportion in maternal plasma is relatively consistent as determined using polymorphic genetic markers across different chromosomes in euploid pregnancies. For aneuploid pregnancies, the observed fetal DNA proportion measured using polymorphic genetic markers for the aneuploid chromosome would be perturbed. In this study, we investigated the feasibility of analyzing single nucleotide polymorphisms using targeted massively parallel sequencing to detect such perturbations in mothers carrying trisomy 21 fetuses. DNA was extracted from plasma samples collected from fourteen pregnant women carrying singleton fetuses. Hybridization-based targeted sequencing was used to enrich 2 906 single nucleotide polymorphism loci on chr7, chr13, chr18 and chr21. Plasma DNA libraries with and without target enrichment were analyzed by massively parallel sequencing. Genomic DNA samples of both the mother and fetus for each case were genotyped by single nucleotide polymorphism microarray analysis. For the targeted regions, the mean sequencing depth of the enriched samples was 225-fold higher than that of the non-enriched samples. From the targeted sequencing data, the ratio between fetus-specific and shared alleles increased by approximately 2-fold on chr21 in the paternally-derived trisomy 21 case. In comparison, the ratio is decreased by approximately 11% on chr21 in the maternally-derived trisomy 21 cases but with much overlap with the ratio of the euploid cases. Computer simulation revealed the relationship between the fetal DNA proportion, the number of informative alleles and the depth of sequencing. Targeted massively parallel sequencing of single nucleotide polymorphism loci in maternal plasma DNA is a potential approach for trisomy 21 detection. However, the method appears to be less robust than approaches using non-polymorphism-based counting of sequence tags in plasma.Keywords
This publication has 19 references indexed in Scilit:
- Genome-Wide Fetal Aneuploidy Detection by Maternal Plasma DNA SequencingObstetrics & Gynecology, 2012
- Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity studyBMJ, 2011
- Targeted Massively Parallel Sequencing of Maternal Plasma DNA Permits Efficient and Unbiased Detection of Fetal AllelesClinical Chemistry, 2011
- Target-enrichment strategies for next-generation sequencingNature Methods, 2010
- Microdroplet-based PCR enrichment for large-scale targeted sequencingNature Biotechnology, 2009
- Prenatal Screening for AneuploidyNew England Journal of Medicine, 2009
- Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasmaProceedings of the National Academy of Sciences, 2008
- Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detectionNature Medicine, 2007
- Lack of Dramatic Enrichment of Fetal DNA in Maternal Plasma by Formaldehyde TreatmentClinical Chemistry, 2005
- Parental Origin of the Extra Chromosome in Trisomy 21 as Indicated by Analysis of DNA PolymorphismsNew England Journal of Medicine, 1991