Ordered-vacancy-compound semiconductors: Pseudocubic
- 15 April 1988
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 37 (12) , 6835-6856
- https://doi.org/10.1103/physrevb.37.6835
Abstract
Whereas substitutional adamantine compounds (e.g., chalcopyrites for n=2, or the AC and BC zinc-blende compounds for n=4 and 0) have four metal atoms around each nonmetal atom and vice versa, ordered-vacancy compounds OVC’s) have but three metal atoms (one A and two B’s) around each nonmetal site (C) while the fourth (unoccupied) site forms an ordered array of vacancies. An example for OVC’s is ‘‘pseudocubic’’ which can be structurally derived from the layered alternate monolayer superlattice of CdSe and InSe (along the [001] direction) by removing half of the Cd atoms from each Cd plane. Such OVC’s form a natural bridge between crystal and impurity physics. Much like the metal vacancy in II-VI compounds (e.g., CdSe), the vacancy in has associated with it (nonmetal) ‘‘dangling bonds’’ and ‘‘lone-pair’’ electrons, which, however, form a dispersed band in the crystal. Using all-electron mixed-basis electronic-structure techniques, we study the properties of such an ordered array of vacancies in vis-a$ga—-vis the experimental data. We find vacancy-induced atomic relaxations (Se moves towards the vacant site), resonant broadening of the lone-pair dangling-bond states into a ≊3-eV band, and that the total charge density around the vacant site has little density and shows scant evidence of dangling bonds. We discuss the nature of the bonding in this system, comparing it to other covalent selenides and to the observed photoemission and optical data. A number of possible order-disorder transitions, including the disordering of cations on the vacant sites, are identified.
Keywords
This publication has 45 references indexed in Scilit:
- Electronic structure of the Cd vacancy in CdTePhysica Status Solidi (b), 1987
- Tight-binding study of the metal vacancy in zinc selenideJournal of Crystal Growth, 1985
- Self-consistent electronic structure of vacancies in semiconductorsJournal of Crystal Growth, 1985
- Long-Range Order inPhysical Review Letters, 1985
- Ternary and pseudoternary AB2X4 compounds (A = Zn, Cd; B = Ga, In; X = S, Se)Materials Chemistry and Physics, 1984
- Electronic properties of the layer semiconductor InSeSolid State Communications, 1978
- Electronic properties of the defect-zincblende semiconductor CdIn4Se4Solid State Communications, 1977
- Self-Consistent Orthogonalized-Plane-Wave and Empirically Refined Orthogonalized-Plane-Wave Energy-Band Models for Cubic ZnS, ZnSe, CdS, and CdSePhysical Review B, 1969
- The microwave spectrum, dipole moment, and structure analysis of seleninyl fluorideJournal of Molecular Spectroscopy, 1968
- Electronic Structure and Optical Properties of Hexagonal CdSe, CdS, and ZnSPhysical Review B, 1967