Long‐lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine.
- 1 August 1990
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 427 (1) , 381-393
- https://doi.org/10.1113/jphysiol.1990.sp018177
Abstract
1. The effects of acetylcholine (ACh) on excitatory postsynaptic potentials (EPSPs) evoked by stimulating Schaffer-commissural afferents and on ionophoretically applied L-glutamate ligands, were investigated in CA1 neurones of hippocampal slices using current- and voltage-clamp techniques. 2. ACh produced a transient suppression followed by a long-lasting facilitation of EPSPs. The facilitation was also seen in Cs+-filled cells under voltage-clamp conditions. Both suppressing and facilitating effects were blocked by atropine. 3. All components of the EPSP were reduced in the initial phase of ACh action, while only the slow component was enhanced during the later phase. The facilitation was blocked by an N-methyl-D-aspartate (NMDA) receptor antagonist, d-2-amino-5-phosphonovalerate (2-APV) and by hyperpolarization. 4. ACh also facilitated responses to ionophoretically applied NMDA in voltage-clamped, Cs+-filled cells in Ba2+-treated slices. ACh facilitated responses to L-glutamate which was blocked by 2-APV. ACh failed to affect responses to kainate or quisqualate. 5. We conclude that ACh, acting on muscarinic receptors, exerts a primary effect in the hippocampus to specifically amplify NMDA receptor-mediated synaptic responses and thereby facilitate EPSPs.This publication has 50 references indexed in Scilit:
- GABA-containing neurons in the septum control inhibitory interneurons in the hippocampusNature, 1988
- Synaptic activation of a cholinergic receptor in rat hippocampusBrain Research, 1988
- NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neuronesNature, 1986
- The physiology and pharmacology of hippocampal formation theta rhythmsProgress in Neurobiology, 1986
- The role of hippocampus in memory: A hypothesisNeuroscience & Biobehavioral Reviews, 1985
- Magnesium gates glutamate-activated channels in mouse central neuronesNature, 1984
- Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal CellsScience, 1983
- The Cholinergic Hypothesis of Geriatric Memory DysfunctionScience, 1982
- The Cholinergic Synapse and the Site of MemoryScience, 1971
- Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitroExperimental Neurology, 1967