On Representation of Damage Evolution in Continuum Damage Mechanics

Abstract
The effect of damage patterning on elastic moduli and damage evolution in ideal brittle cracked solids is examined. Key limitations associated with typical continuum damage mechanics approaches are addressed. Critical shortcomings arising from the use of spatially-averaged damage descriptors in the evaluation of effective moduli and thermodynamic forces are investigated using numerical simulations of evolving two-dimensional crack systems. Fundamental elements of a higher-order continuum description of damage based on distribution functions are discussed, which directly include damage interaction effects.