Synthesis of C-5 Analogs of N-Acetylneuraminic Acid via Indium-Mediated Allylation of N-Substituted 2-Amino-2-deoxymannoses

Abstract
This paper presents a short synthesis of new analogs of N-acetylneuraminic acid (Neu5Ac) varied structurally at C-5. The synthetic strategy includes indium-mediated coupling reactions between ethyl 2-(bromomethyl)acrylate and N-derivatized mannosamines, and the ozonolysis of the resulting enoates. The main advantage of this indium-mediated allylation for the synthesis of neuraminic acids comes from the efficient, stereoselective C−C bond formation, which affords predominantly the correct diastereomer having a threo relationship between the newly generated hydroxyl group and the C-2 amide group of mannosamine. By this approach, Neu5Boc (4a), Neu5Gly (4b), Neu5(6-NHCbz)hexanoyl (4c), and Neu5(1-naphthyl)acetyl (4d) were prepared in three steps (overall ∼50%). In addition, several N-substituted neuraminic acids were synthesized by N-acylation of the amino functionality of neuraminic acid (5b), which was obtained by deprotecting the N-Boc group of Neu5Boc (4a). These analogs include Neu5BrAc (6a), Neu5acryloyl (6b), Neu5benzoyl (6c) and Neu5benzoyl-4-benzoyl (6d). The N-acylation method is especially suited for synthesis of neuraminic acids bearing substituents that can not tolerate ozonolysis or that are unstable (photo)chemically. Finally, we illustrate the utility of synthetic neuraminic acids by converting 4c to a derivative of 2-deoxy-2,3-didehydroneuraminic acid (8c), a precursor to inhibitors of neuraminidases.

This publication has 62 references indexed in Scilit: