The Stefan problem in heterogeneous media
- 1 December 1989
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 6 (6) , 481-501
- https://doi.org/10.1016/s0294-1449(16)30311-0
Abstract
The nonlinear heat-transfer equation with a nonlinear boundary flux condition is investigated. The medium is assumed heterogeneous ( i.e. the coefficients may depend on space variables) but piecewise homogeneous. The enthalpy formulation is employed. Existence of a weak solution is demonstrated, using an approximation by the Rothe method and a certain regularization of the contact conditions between the homogeneous subdomains. Phase transitions described as multiphase Stefan problems in some subdomains are also admitted, and a degeneration of the parabolic type of the equation is covered, too. Résumé: Dans cet article le problème de la conduction de chaleur dans un milieu hétérogène (avec des parts homogènes) est étudié. L’équation parabolique, formulée en version enthalpique, et la condition aux limites sont non linéaires. On prouve l’existence de la solution faible en utilisant la méthode de Rothe et une certaine régularisation de la condition du contact entre des subdomaines homogènes. Un problème multiphase de Stefan et une dégénération de la parabolicité sont aussi considérés.This publication has 5 references indexed in Scilit:
- Optimal control of a Stefan problem with state-space constraintsNumerische Mathematik, 1986
- A variational inequality approach to generalized two-phase Stefan problem in several space variablesAnnali di Matematica Pura ed Applicata (1923 -), 1982
- A generalized Stefan problem in several space variablesApplied Mathematics & Optimization, 1982
- On the Existence of Weak-Solutions to an n-Dimensional Stefan Problem with Nonlinear Boundary ConditionsSIAM Journal on Mathematical Analysis, 1980
- The Stefan problem in several space variablesTransactions of the American Mathematical Society, 1968