A gel-membrane model of glomerular charge and size selectivity in series

Abstract
We have analyzed glomerular sieving data from humans, rats in vivo, and from isolated perfused rat kidneys (IPK) and present a unifying hypothesis that seems to resolve most of the conflicting results that exist in the literature. Particularly important are the data obtained in the cooled IPK, because they allow a variety of experimental conditions for careful analysis of the glomerular barrier; conditions that never can be obtained in vivo. The data strongly support the classic concept of a negative charge barrier, but separate components seem to be responsible for charge and size selectivity. The new model is composed of a dynamic gel and a more static membrane layer. First, the charged gel structure close to the blood compartment has a charge density of 35–45 meq/l, reducing the concentration of albumin to 5–10% of that in plasma, due to ion-ion interactions. Second, the size-selective structure has numerous functional small pores (radius 45–50 Å) and far less frequent large pores (radius 75–115 Å), the latter accounting for 1% of the total hydraulic conductance. Both structures are required for the maintenance of an intact glomerular barrier.