Integrated face and gait recognition from multiple views

Abstract
We develop a view-normalization approach to multi-view face and gait recognition. An image-based visual hull (IBVH) is computed from a set of monocular views and used to render virtual views for tracking and recognition. We determine canonical viewpoints by examining the 3D structure, appearance (texture), and motion of the moving person. For optimal face recognition, we place virtual cameras to capture frontal face appearance; for gait recognition we place virtual cameras to capture a side-view of the person. Multiple cameras can be rendered simultaneously, and camera position is dynamically updated as the person moves through the workspace. Image sequences from each canonical view are passed to an unmodified face or gait recognition algorithm. We show that our approach provides greater recognition accuracy than is obtained using the unnormalized input sequences, and that integrated face and gait recognition provides improved performance over either modality alone. Canonical view estimation, rendering, and recognition have been efficiently implemented and can run at near real-time speeds.

This publication has 16 references indexed in Scilit: