Monoclonal antibodies to DNA modified with cis- or trans-diamminedichloroplatinum(II).

Abstract
Murine monoclonal antibodies that bind selectively to adducts formed on DNA by the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, or to the chemotherapeutically inactive trans isomer trans-DDP were elicited by immunization with calf thymus DNA modified with either cis- or trans-DDP at ratios of bound platinum per nucleotide, (D/N)b, of 0.06-0.08. The binding of two monoclonal antibodies to cis-DDP-modified DNA was competitively inhibited (50% control) in an enzyme-linked immunosorbent assay (ELISA) by 4-6 nM concentrations (600-900 fmol) of cis-DDP bound to DNA, (D/N)b = 0.031. Similar concentrations (4-6 nM) of cis-DDP-modified poly(dG).cntdot.poly(dC) also inhibited antibody binding, whereas higher concentrations (17-36 nM) of cis-DDP-modified poly[d(AG)].cntdot.poly[d(TC)] were required for inhibition. Adducts formed by cis-DDP on other synthetic DNA polymers did not inhibit antibody binding to cis-DDP-DNA. The biologically active compounds [Pt(en)Cl2], [Pt(dach)Cl2], and [Pt(NH3)2(cbdca)] (carboplatin) (where en is ethylenediamine, dach is 1,2-diaminocyclohexane, and cbdca is cyclobutane-1,1-dicarboxylate) all formed antibody-detectable adducts on DNA, whereas the inactive platinum complexes trans-DDP and [Pt(dien)Cl]Cl (dien, diethylenetriamine) did not. The monoclonal antibodies therefore recognize a bifunctional Pt-DNA adduct with cis stereochemistry in which platinum is coordinated by two adjacent guanines or, to a lesser degree, by adjacent adenine and guanine. A monoclonal antibody raised against trans-DDP-DNA was competitively inhibited in an ELISA by 40 nM trans-DDP bound to DNA, (D/N)b = 0.022. This antibody crossreacted with unmodified, denatured DNA. Its binding to trans-DDP-DNA was selectively inhibited by trans-DDP-modified poly[d(GT)].poly[d(CA)] (50% inhibition at 1 nM bound trans-DDP). The recognition of cis-or trans-DDP-modified DNAs by monoclonal antibodies thus parallels the known modes of DNA binding of these compounds and may correlate with their biological activities.

This publication has 19 references indexed in Scilit: