Window function influence on phase error in phase-shifting algorithms

Abstract
We present five different eight-point phase-shifting algorithms, each with a different window function. The window function plays a crucial role in determining the phase (wavefront) because it significantly influences phase error. We begin with a simple eight-point algorithm that uses a rectangular window function. We then present alternative algorithms with triangular and bell-shaped window functions that were derived from a new error-reducing multiple-averaging technique. The algorithms with simple (rectangular and triangular) window functions show a large phase error, whereas the algorithms with bell-shaped window functions are considerably less sensitive to different phase-error sources. We demonstrate that the shape of the window function significantly influences phase error.