Effects of Strain Rate and Temperature in Orthogonal Metal Cutting

Abstract
A new theoretical analysis of the orthogonal cutting process is described which is based on the known behaviour of a single phase metal at high strains, strain rates and temperatures. The theoretical analysis applies to the case where a continuous chip is produced under non-lubricated conditions with the absence of a built-up edge on the tool face and indicates the important parameters in the cutting process. The theory is examined experimentally and its validity established. Finally, from a knowledge of the effects of strain rate and temperature on the yield stress of a single phase metal, the theory is used to predict the effects of changes in cutting speed and tool rake angle on the tool forces and geometry of the cutting process. These predictions are compared qualitatively with the results of cutting tests.

This publication has 2 references indexed in Scilit: