Spectral fluctuation properties of Hamiltonian systems: the transition region between order and chaos
- 1 October 1985
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 18 (14) , 2751-2770
- https://doi.org/10.1088/0305-4470/18/14/026
Abstract
The authors study numerically the classical dynamical behaviour, and the spectral fluctuation properties, of a class of Hamiltonian systems with two degrees of freedom. The quantum mechanical properties of these systems are monotonic but non-universal functions of the fraction of classical phase space filled by chaotic trajectories. It is found that the observed spectral fluctuation measures can be reproduced by a random-matrix model which depends on one parameter only.Keywords
This publication has 16 references indexed in Scilit:
- Energy-Level Statistics of Integrable Quantum SystemsPhysical Review Letters, 1985
- Degree of randomness of the sequence of eigenvaluesPhysical Review A, 1984
- Semiclassical level spacings when regular and chaotic orbits coexistJournal of Physics A: General Physics, 1984
- Classical Yang-Mills solutions and iterative mapsPhysical Review D, 1984
- Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation LawsPhysical Review Letters, 1984
- Quantizing a classically ergodic system: Sinai's billiard and the KKR methodAnnals of Physics, 1981
- A universal instability of many-dimensional oscillator systemsPhysics Reports, 1979
- Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropyPhysical Review A, 1978
- Level clustering in the regular spectrumProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1977
- The applicability of the third integral of motion: Some numerical experimentsThe Astronomical Journal, 1964