Steady swimming muscle dynamics in the leopard sharkTriakis semifasciata

Abstract
SUMMARY Patterns of red muscle strain and activation were examined at three positions along the body (0.42, 0.61 and 0.72 L, where L is total body length) and correlated with simultaneous measurements of midline kinematics during steady swimming (approx. 1.0 L s–1) in the leopard shark Triakis semifasciata. Analysis of lateral displacement along the body indicates that the leopard shark is a subcarangiform swimmer. Longitudinal variation in red muscle strain was observed with strain amplitudes ranging from ±3.9% in the anterior,± 6.6% in the mid, to ±4.8% in the posterior body position. Strain was in-phase with local midline curvature. In addition, strain amplitude calculated from a bending beam model closely matched strain measured using sonomicrometry at all three body positions. There is a high degree of similarity in red muscle activation patterns along the body between the leopard shark and many fish species, in that the onset of activation occurs during muscle lengthening while offset occurs during muscle shortening. However, we found no significant longitudinal variation in the EMG/strain phase relationship and duty cycles, with onset of muscle activation occurring at 51.4–61.8° and offset at 159.7–165.2° (90° is peak length). This consistent pattern of activation suggests that red muscle along the entire length of the body contributes to positive power production. Thus, sharks such as Triakis may have no regional specialization in red muscle function like that seen in many teleosts, which may indicate that the evolution of differential muscle function along the body occurred after the divergence of cartilaginous and bony fishes.

This publication has 41 references indexed in Scilit: