GaugedQballs

Abstract
Classical nontopological soliton configurations are considered within the theory of a complex scalar field with a gauged U(1) symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U(1) symmetry is broken, the gauge field becomes massive, and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q matter in bulk form. We also briefly discuss solitons with fermions in a U(1) gauge theory.