Applications of high efficiency lithium acetate transformation of intact yeast cells using single‐stranded nucleic acids as carrier
- 1 April 1991
- Vol. 7 (3) , 253-263
- https://doi.org/10.1002/yea.320070307
Abstract
The highly efficient yeast lithium acetate transformation protocol of Schiestl and Gietz (1989) was tested for its applicability to some of the most important need of current yeast molecular biology. The method allows efficient cloning of genes by direct transformation of gene libraries into yeast. When a random gene pool ligation reaction was transformed into yeast, the LEU2, HIS3, URA3, TRP1 and ARG4 genes were found among the primary transformations at a frequency of approximately 0·1%. The RAD4 gene, which is toxic to Escherichia coli, was also identified among the primary transformants of a ligation library at a frequency of 0·18%. Non‐selective transformation using this transformation proctocol was shown to increase the frequency of gene disruption three‐fold. Co‐transformation showed that 30–40% of the transformation‐competent cells take up more than one DNA molecule which can be used to enrich for integration and delection events 30‐ to 60‐fold. Co‐transformation was used in the construction of simultaneous double gene disruptions as well as disrupting both copies of one gene in a diploid which occurred at 2–5% the frequency of the single event.Keywords
This publication has 42 references indexed in Scilit:
- Studies on transformation of Escherichia coli with plasmidsPublished by Elsevier ,2006
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coliPublished by Elsevier ,2003
- Cloning and nucleotide sequence analysis of the Saccharomyces cerevisiaeRAD4 gene required for excision repair of UV-damaged DNAGene, 1988
- New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sitesGene, 1988
- A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistanceMolecular Genetics and Genomics, 1984
- [12] One-step gene disruption in yeastPublished by Elsevier ,1983
- A physical, genetic and transcriptional map of the cloned his3 gene region of Saccharomyces cerevisiaeJournal of Molecular Biology, 1980
- Transformation in yeast: Development of a hybrid cloning vector and isolation of the can1 geneGene, 1979
- Sterile host yeasts (SHY): A eukaryotic system of biological containment for recombinant DNA experimentsGene, 1979