A Spline-Trigonometric Galerkin Method and an Exponentially Convergent Boundary Integral Method
Open Access
- 1 October 1983
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 41 (164) , 383-397
- https://doi.org/10.2307/2007682
Abstract
We consider a Galerkin method for functional equations in one space variable which uses periodic cardinal splines as trial functions and trigonometric polynomials as test functions.Keywords
This publication has 11 references indexed in Scilit:
- On the Asymptotic Convergence of Collocation MethodsMathematics of Computation, 1983
- Finite Element Analysis of a Scattering ProblemMathematics of Computation, 1981
- Simultaneous approximation in negative norms of arbitrary orderRAIRO. Analyse numérique, 1981
- A Galerkin collocation method for some integral equations of the first kindComputing, 1980
- Fast Fourier Methods in Computational Complex AnalysisSIAM Review, 1979
- A finite element method for some integral equations of the first kindJournal of Mathematical Analysis and Applications, 1977
- Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension $2$RAIRO. Analyse numérique, 1977
- Solution of Boundary Value Problems by Integral Equations of the First KindSIAM Review, 1973
- Error-bounds for finite element methodNumerische Mathematik, 1971
- Cardinal interpolation and spline functionsJournal of Approximation Theory, 1969