Abstract
During the ablation seasons of 1983 and 1987, measurements of discharge and suspended sediment concentration of melt waters draining from Gornergletscher, Switzerland, were obtained at hourly intervals, permitting estimation of total daily sediment flux. Seasonal patterns of variation in sediment flux are interpreted in terms of development of the subglacial drainage network. Variations in flux relate to contrasting temporal patterns of run-off, and the differing incidence of subglacial hydrological events in the 2 years. During such events, in which basal water pressure is raised, large areas of previously hydraulically isolated sub-sole are integrated with flow, releasing quantities of sediment from basal storage. Several types of event are identified, arising during periods of generally increasing discharge in the early ablation season, resulting from temporary blocking of subglacial passageways or from outbursts emptying a marginal, ice-dammed lake, and related to rain-induced floods. Flow spreads out over the glacier bed as pressure increases, suggesting that the basal drainage system consists of a diffuse network of many linked cavities rather than fewer major conduits, particularly at the start of the season. A distributed cavity system may be simplified to fewer conduits, dimensions of cavities may enlarge or the area of bed over which cavities are developing may be expanded to supply debris to melt waters during events. Different partial areas of sub-sole become progressively integrated with flow during sequences of hydrological events. Later in summer, melt waters are confined to basal areas within which only limited sediment remains available for acquisition.