Input-to-state stability with respect to measurement disturbances for one-dimensional systems
Open Access
- 1 January 1999
- journal article
- Published by EDP Sciences in ESAIM: Control, Optimisation and Calculus of Variations
- Vol. 4, 99-121
- https://doi.org/10.1051/cocv:1999105
Abstract
We consider one-dimensional affine control systems. We show that if such a system is stabilizable by means of a continuous, time-invariant feedback, then it can be made input-to-state stable with respect to measurement disturbances, using a continuous, periodic time-varying feedback. We provide counter-examples showing that the result does not generally hold if we want the feedback to be time-invariant or if the control system is not supposed affine. Nous étudions des systèmes de contrôle affines de dimension un. Nous montrons que si un tel système est stabilisable à l'aide d'un feedback continu indépendant du temps, alors il peut aussi être rendu “input-to-state stable" par rapport aux erreurs de mesure à l'aide d'un feedback continu dépendant périodiquement du temps. Nous donnons en outre des contre-exemples montrant que ce résultat est en général faux si on ne considère que des feedbacks indépendants du temps, ou si le système étudié n'est pas affine.Keywords
This publication has 9 references indexed in Scilit:
- Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbancesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1997
- Robust Nonlinear Control DesignPublished by Springer Nature ,1996
- New characterizations of input-to-state stabilityIEEE Transactions on Automatic Control, 1996
- On the Stabilization in Finite Time of Locally Controllable Systems by Means of Continuous Time-Varying Feedback LawSIAM Journal on Control and Optimization, 1995
- Global internal stabilizability does not imply global external stabilizability for small sensor disturbancesIEEE Transactions on Automatic Control, 1995
- On the stabilization of controllable and observable systems by an output feedback lawMathematics of Control, Signals, and Systems, 1994
- Global asymptotic stabilization for controllable systems without driftMathematics of Control, Signals, and Systems, 1992
- Mathematical Control TheoryPublished by Springer Nature ,1990
- Smooth stabilization implies coprime factorizationIEEE Transactions on Automatic Control, 1989