Abstract
We give a new method to prove results of the following type. Let: (∇2 + k2)u=0 in DR={xx‖?R}, k2≳0. (1) If uL2(DR), then u≡0 in DR. (2) If ‖xmu(x)→0 as ‖x‖→∞, x21+⋅⋅⋅+x2N−1?cx−2pN ,p≳0, m=1, 2, 3,..., ‖x‖[(∂u/∂‖x‖)ikux‖→∞]→0, then u≡0 in DR.

This publication has 2 references indexed in Scilit: