Active control in the turbulent wall layer of a minimal flow unit

Abstract
Direct simulations of flow in a channel with complex, time-dependent wall geometries facilitate an investigation of smart skin control in a turbulent wall layer (with skin friction drag reduction as the goal). The test bed is a minimal flow unit, containing one pair of coherent structures in the near-wall region: a high- and a low-speed streak. The controlling device consists of an actuator, Gaussian in shape and approximately twelve wall units in height, that emerges from one of the channel walls. Raising the actuator underneath a low-speed streak effects an increase in drag, raising it underneath a high-speed streak effects a reduction – indicating a mechanism for control. In the high-speed region, fast-moving fluid is lifted by the actuator away from the wall, allowing the adjacent low-speed region to expand and thereby lowering the average wall shear stress. Conversely, raising an actuator underneath a low-speed streak allows the adjacent high-speed region to expand, which increases skin drag.