Time correlated single photon Mie scattering from a sonoluminescing bubble

Abstract
Application of time correlated single photon counting to pulsed Mie scattering enables one to resolve changes in light scattering to better than 50 ps. This technique is applied to the highly nonlinear motion of a sonoluminescing bubble. Physical processes, such as outgoing shock wave emission, that limit the interpretation of the data are measured with a streak camera and microscopy. Shock speeds about 6 km/s have been observed.