The Differential Effects of Prostaglandin E1 and Nitroglycerin on Regional Cerebral Oxygenation in Anesthetized Patients
- 1 November 1997
- journal article
- clinical trial
- Published by Wolters Kluwer Health in Anesthesia & Analgesia
- Vol. 85 (5) , 1054-1059
- https://doi.org/10.1097/00000539-199711000-00017
Abstract
We evaluated the effects of prostaglandin E1 (PGE1) and nitroglycerin (NTG) on regional tissue oxygenation and use in the brain using near infrared spectroscopy (NIRS). Twenty-four patients who underwent elective cardiac surgery were randomly divided into two groups. The study was performed after the induction of anesthesia and before the start of the surgical procedure. After measuring arterial and jugular venous blood gases, cardiovascular hemodynamics, and relative cerebral oxyhemoglobin (HbO2), deoxyhemoglobin, and cytochrome aa3 at the baseline, PGE1 (n = 12) or NTG (n = 12) was infused intravenously at a rate of 0.3 g/kg or 5 g/kg, respectively. Thirty minutes after the start of drug infusion, administration of the drugs was stopped. Both PGE1 and NTG reduced mean arterial pressure to approximately 70% of the baseline value 10, 20, and 30 min after start of drug infusion (P < 0.05). Internal jugular venous pressure increased significantly during NTG but not during PGE1 infusion (P < 0.05). PGE1 increased HbO2 concentration, which was sustained for 30 min after discontinuing the drug. NTG increased HbO2 concentration, but this gradually returned to the baseline level after discontinuation of the drug. Baseline value of jugular oxygen saturation was 64.5% +/- 2.1%, and there was no significant changes during the infusion of PGE1 or NTG. These results demonstrate that both NTG and PGE1 increased cerebral oxygen saturation as measured by NIRS. This may be explained by local cerebral hyperemia without major alteration in flow/metabolism coupling of brain. The onset of this increase was slower and the duration of this effect after discontinuation of the drug was more prolonged with PGE1. These phenomena occurred despite the relatively similar time course of the effect of these two drugs on systemic hemodynamic values. The cerebrovascular effects of vasodilators used for induced hypotension are not fully understood. In this study, we used near infrared spectrometry and jugular oxygen saturation measurement to assess the effects of prostaglandin E1 and nitroglycerin on cerebral perfusion. We found that nitroglycerin and prostaglandin E1 increase cerebral oxygen saturation as measured by near infrared spectrometry, but with different time courses. This information will hopefully help anesthesiologists to better maintain adequate regional cerebral oxygenation.Keywords
This publication has 28 references indexed in Scilit:
- Treatment modalities for hypertensive patients with intracranial pathologyCritical Care Medicine, 1996
- Oxygen uptake and carbon dioxide elimination during controlled hypotension induced by prostaglandin E 1 or nitroglycerinBritish Journal of Anaesthesia, 1994
- Effects of intravenous nitroglycerin on the intracranial pressure and volume pressure responseJournal of Neurosurgery, 1983
- Prostaglandin E1 as a hypotensive drug during general anaesthesiaAnaesthesia, 1982
- Nitroglycerin induced hypotension will maintain CBF in hypertensive rats.Stroke, 1982
- Intracranial pressure during nitroglycerin-induced hypotensionJournal of Neurosurgery, 1980
- Intracranial Pressure in the Cat during Nitroglycerin-induced HypotensionAnesthesiology, 1979
- Nitroglycerin as a Hypotensive Drug during General AnesthesiaAnesthesiology, 1978
- Effects of prostaglandins E1, E2, A1, A2, and F2α on canine carotid arterial blood flow, cerebrospinal fluid pressure, and intraocular pressureJournal of Neurosurgery, 1973
- The effects of prostaglandins E1, A1, and F2a on the cerebral circulation of dogs and monkeysJournal of Neurosurgery, 1972