Measured lung dose correction factors for 50 MV photons

Abstract
Some clinically relevant measurements of lung tissue/water equivalent interfaces have been performed for a 50 MV therapeutic x-ray beam. The purpose was to investigate the severity of dose perturbation effects in lung tissue and adjacent tissues using an energy well above the common clinical practice in thoracic irradiations. The phantoms were constructed of solid water, PMMA and white polystyrene as soft tissue (water) equivalents, and cork was used as the lung tissue equivalent. Measurements were performed using radiographic film and a cylindrical ionization chamber. The results show that the degradation of the 20/80% beam penumbra in the lung region is severe, up to 2.5 times the penumbra in water for a 10 cm thick lung with a density of 0.30 x 10(3) kg m(-3). The lack of electronic equilibrium in the low-density region can cause underdosage at the lung/tumour interface of up to 30% of maximum target dose, and the build-up depth to 95% of target dose in unit density tissue behind the lung may be as large as 22 mm. It is also shown that these figures strongly depend on patient anatomy and beam size and why a careful calculation of the individual dose distribution is needed for optimal choice of photon beam energy in thoracic treatments.