Effects of electrode location on myoelectric conduction velocity and median frequency estimates

Abstract
The effect of surface electrode location on the estimates of the median frequency and conduction velocity of the myoelectric signal was investigated. The locations were identified with respect to the innervation zone and the tendonous portion of the tibialis anterior muscle. Considerable modifications in the median frequency and conduction velocity parameters were noted. The highest values of the median frequency occurred at the region of the innervation zone and tendonous insertion of the muscle, and decreased proportionally with distance from these areas. The rate of change of median frequency was not effected by electrode location. Estimates of conduction velocity were most stable in a region between the distal tendon and the adjacent innervation zone. This region also provided the best linear fit when comparing conduction velocity to median frequency estimates. The implications for signal detection procedures are discussed.