A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions

Abstract
SUMMARY This paper investigates the properties of a semiparametric method for estimating the dependence parameters in a family of multivariate distributions. The proposed estimator, obtained as a solution of a pseudo-likelihood equation, is shown to be consistent, asymptotically normal and fully efficient at independence. A natural estimator of its asymptotic variance is proved to be consistent. Comparisons are made with alternative semiparametric estimators in the special case of Clayton's model for association in bivariate data.

This publication has 0 references indexed in Scilit: