Abstract
Initial results are presented from CHOOZ, a long-baseline reactor-neutrino vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid scintillation calorimeter located at a distance of about 1 km. The detector was constructed in a tunnel protected from cosmic rays by a 300 MWE rock overburden. This massive shielding strongly reduced potentially troublesome backgrounds due to cosmic-ray muons, leading to a background rate of about one event per day, more than an order of magnitude smaller than the observed neutrino signal. From the statistical agreement between detected and expected neutrino event rates, we find (at 90% confidence level) no evidence for neutrino oscillations in the electron antineutrino disappearance mode for the parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.

This publication has 0 references indexed in Scilit: