Modulated Optical Lattice as an Atomic Fabry-Perot Interferometer

Abstract
We propose to engineer the atomic band structure in optical lattices in order to design a Fabry-Perot interferometer with large mode spacing and strong nonlinear coupling to be employed in atom optics. The use of an optical lattice allows for a significant reduction of the atomic effective mass, while the slow modulation of its parameters spatially confines the matter waves on a length scale of a few dozen optical wavelengths. As a consequence, the mode spacing in such a cavity would be as high as one-tenth of the recoil energy, allowing for a very efficient filter action, while the nonlinear coupling due to interatomic interactions could lead to bistability and limiting effects in the transmission of the atomic beam.