H2AX phosphorylation within the G 1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks

Abstract
The variant histone H2AX is phosphorylated in response to UV irradiation of primary human fibroblasts in a complex fashion that is radically different from that commonly reported after DNA double-strand breaks. H2AX phosphorylation after exposure to ionizing radiation produces foci, which are detectable by immunofluorescence microscopy and have been adopted as clear and consistent quantitative markers for DNA double-strand breaks. Here we show that in contrast to ionizing radiation, UV irradiation mainly induces H2AX phosphorylation as a diffuse, even, pan-nuclear staining. UV induced pan-nuclear phosphorylation of H2AX is present in all phases of the cell cycle and is highest in S phase. H2AX phosphorylation in G 1 cells depends on nucleotide excision repair factors that may expose the S-139 site to kinase activity, is not due to DNA double-strand breaks, and plays a larger role in UV-induced signal transduction than previously realized.