Alternative method to find orbits in chaotic systems
- 1 September 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review E
- Vol. 52 (3) , 2388-2391
- https://doi.org/10.1103/physreve.52.2388
Abstract
We present here a method which applies well ordered symbolic dynamics to find unstable periodic and nonperiodic orbits in a chaotic system. The method is simple and efficient and has been successfully applied to a number of different systems such as the Hénon map, disk billiards, stadium billiard, wedge billiard, diamagnetic Kepler problem, collinear Helium atom, and systems with attracting potentials. The method seems to be better than earlier applied methods.Keywords
All Related Versions
This publication has 9 references indexed in Scilit:
- Bifurcations and complete chaos for the diamagnetic Kepler problemPhysical Review E, 1995
- Classical and quantum chaos of the wedge billiard. I. Classical mechanicsPhysical Review E, 1993
- The semiclassical helium atomChaos: An Interdisciplinary Journal of Nonlinear Science, 1992
- Pruning of orbits in four-disk and hyperbola billiardsChaos: An Interdisciplinary Journal of Nonlinear Science, 1992
- Chaos in Classical and Quantum MechanicsPublished by Springer Nature ,1990
- The hydrogen atom in a uniform magnetic field — An example of chaosPhysics Reports, 1989
- Topological and metric properties of Hénon-type strange attractorsPhysical Review A, 1988
- Numerical study of a billiard in a gravitational fieldPhysica D: Nonlinear Phenomena, 1986
- Generating partitions for the dissipative Hénon mapPhysics Letters A, 1985