Measurement of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subjected to Thermal Cycling

Abstract
Failures in electronic packages under thermal fatigue usually result from cracking in solder joints due to creep/fatigue crack growth. Understanding the stress/strain behavior of such solder joints is the first step in characterizing their fracture behavior. A specimen has been developed to determine the stress/strain hysteresis response of 90Pb/10Sn solder joints under cyclic thermal loadings. Simple and special techniques have been developed to fabricate solder joints with relatively high melting points, such as 90Pb/10Sn. Four high-temperature strain gages are mounted on the specimen to measure mechanical strains which provide the basis for determining the shear stress and strain in the solder. A special Wheatstone bridge has been designed to improve the specimen sensitivity, e.g., 20 με/MPa in the test. Shear stresses in the solder as low as 0.5 MPa can be resolved accurately. The specimen was subjected to thermal cycling between 40°C to 140°C, with 10°C/min ramp rate and 10 minute hold times, in a thermal chamber developed in-house. Excellent experimental results have been obtained for 90Pb/10Sn solder joints in that detailed characteristics of stress relaxation and strain creep as a function of temperature were captured. The specimen developed is not only suitable for use in studying the constitutive response of soft solder alloys and other joining materials, such as adhesives, but can serve as a thermal fatigue specimen to study the fracture behavior.

This publication has 0 references indexed in Scilit: