The Distances to Open Clusters from Main-Sequence Fitting. III. Improved Accuracy with Empirically Calibrated Isochrones

Abstract
We continue our series of papers on open cluster distances with a critical assessment of the accuracy of main-sequence fitting using isochrones that employ empirical corrections to the color-temperature relations. We use four nearby open clusters with multicolor photometry and accurate metallicities and present a new metallicity for Praesepe ([Fe/H] = +0.11 +/- 0.03) from high-resolution spectra. The internal precision of distance estimates is about a factor of 5 better than the case without the color calibrations. After taking into account all major systematic errors, we obtain distances accurate to about 2%-3% when there exists a good metallicity estimate. Metallicities accurate to better than 0.1 dex may be obtained from BVIcKs photometry alone. We also derive a helium abundance for the Pleiades of Y = 0.279 +/- 0.015, which is equal within the errors to the Sun's initial helium abundance and that of the Hyades. Our best estimates of distances are (m - M)_0 = 6.33 +/- 0.04, 8.03 +/- 0.04, and 9.61 +/- 0.03 to Praesepe, NGC 2516, and M67, respectively. Our Pleiades distance at the spectroscopic metallicity, (m - M)_0 = 5.66 +/- 0.01 (internal) +/- 0.05 (systematic), is in excellent agreement with several geometric distance measurements. We have made calibrated isochrones for -0.3 <= [Fe/H] <= +0.2 available at http://www.astronomy.ohio-state.edu/iso/ .

This publication has 0 references indexed in Scilit: